

Antarctic ice sheet evolution

ECORD 🛟 IODP-Italia

50 years of Ocean drilling and seismic stratigraphy discoveries

Laura De Santis Idesantis@inogs.it

National Institute of Oceanography and Applied Geophysics

Photo L. De Santis

Expedition 374

Ross Sea West Antarctic Ice Sheet History INTERNATIONAL OCEAN DISCOVERY PROGRAM

January 4-March 8 2018 Lyttelton to Lyttelton, New Zealand

Changes in cryosphere affect the Earth System

Is the ice mass loss due Ocean warming?

Pritchard et al. (2013), Nature Initial thinning

Hanna et al., 2013

Ice shelves are melting

(IPCC, 2013; Zachos et al., 2008, DeConto et al., 2010)

Antarctic Seismic Data Library System run by OGS and USGS/LDEO http://sdls.ogs.trieste.it/

0

Escutia et al., 2019

1973 Fred Davey (GNS, NZ) geophysicist **Glomar Challenger** (Wellington)

Ice existed 25 Ma ago

270

Sedimentologist (Univ. Victoria, NZ)

Video talks March 8th 2018

http://www.scar-pais.org/index.php/insights/video

DSDP Leg 29 Ocean Deep sea Geochemical evidence for the onset of Antarctic glaciations at c. 34 Ma

Talk by Jim Kenneth (Univ. California) March 8th 2018 http://www.scar-pais.org/index.php/insights/video

Thermal isolation of Antarctic ~35 Ma when ocean gateways opened – *James Kennett's hypothesis*

DSDP leg 28 (Hayes and Frakes, 1973)

Ocean Gateway Hypothesis

Warm Eocene Ice free continent (greenhouse world)

Opening of the Tasmanian Gateway during the Eocene/Oligocene transition

Initiation of Circum Antarctic Current

Thermal isolation of Antarctica And Glacial Expansion

First evidence of grounding ice dated 25 Ma

ice albedo feedback amplified cooling => icehouse world

Atmopsheric carbon dioxide caused Antarctic glaciation - DeConto & Pollard's hypothesis

Rapid Cenozoic glaciation of Antarctica induced by declining atmospheric CO₂

Robert M. DeConto* & David Pollard†

* Department of Geosciences, University of Massachusetts, Amherst, Massachusetts 01003, USA † EMS Environment Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, USA

LETTERS

nature

Thresholds for Cenozoic bipolar glaciation

Robert M. DeConto¹, David Pollard², Paul A. Wilson³, Heiko Pälike³, Caroline H. Lear⁴ & Mark Pagani⁵

Vol 455|2 October 2008|doi:10.1038/nature07337

Eocene paleogeographic, paleoceanographic and paleotopographic reconstructions

Dinocyst assemblage and organic biomarker paleothermometry data from Site U1356

Cooling coincided with cold waters from the Ross Sea Gyre flowing through the incipient opening of the southern Tasman Gateway, following the Early Eocene Climatic Optimum

although atmospheric CO2 forcing alone might provide uniform middle Eocene cooling, the early opening of the Tasman Gateway is more consistent with Southern Ocean surface water and global deep ocean cooling in the apparent absence of (sub-) equatorial cooling

> Proto-Leeuwin Current (PLC) Tasman Current Australo-Antarctic Gulf (AAG)

Pollen from the e. Eocene peak greenhouse conditions Wilkes Land IODP Site 1356

Pollen of extent palms

Pollen from Wilkes Land

despite polar winter darkness

Mean Annual T: >13.3 °C Cold Month mean T: >5°C + 3°C Warm Month mean T: >22.8 °C

Pollen of extent Bombacaceae plants

Pollen from Wilkes Land

Mean Annual T: >16.8 °C Cold Month mean T: >10.6 °C + 3°C Warm Month mean T: >21.5 °C

> Pross et al., Nature, 2012 Contreras et al., 2013

82° S Turonian–Santonian age (92 to 83 million years ago)

- mean annual temperature +13 °C
 - precipitation of 1,120 mm yr-1
 - 4 months fully dark
- CO2 1,120–1,680 ppm
- No ice

Klages et al., 2020 545.04 m Mb

Glacimarine sediments from CIROS-1'drillcore

Proximal sedimentary evidence for earliest Oligocene Antarctic glaciation (33-35 Ma)

Hambrey et al (1991), ODP Leg 119, Prydz Bay O'Brien, Cooper et al. (2004), ODP Leg 188

Iceberg rafted debris

Australia, Germany, United Kingdom, The Netherlands, Italy, New Zealand, and USA

Cape Roberts project 1997-99 (1500 m) 34-17 Ma

from cool temperate to subpolar to polar climate

ANDRILL (ANtarctic DRILLing Project 2006-07-08 (2500 m) last 17 Ma

CO₂ threshold delays continental scale glaciation until Oi1a

Galleoti, DeConto, Naish, Stocchi et al. (2016, Science)

600ppm CO₂ threshold not permanently crossed until Oi1a

Antarctic Seismic Data Library System http://sdls.ogs.trieste.it/

Ancient sea floor depth map. ANTOSTRAT project – Ross Sea Atlas . Brancolini et al., 1995

Ancient sea floor depth map. ANTOSTRAT project – Ross Sea Atlas . Brancolini et al., 1995

Figure 9. Palynofacies with abundant, much degraded plant tissue; Site 270, Core 43.

Ancient sea floor depth map. ANTOSTRAT project – Ross Sea Atlas . Brancolini et al., 1995

PROXY (sediment cores)

- Ice/rafting record
- Geochemical changes
- Shift in biogeographic zones

Reconstruct ice- atmospheric-oceanic temperatures

identify past polar amplification of climate change

> assess forcings/feedbacks on ice sheet stability/instability

Colleoni et al., 2018 modified

Volpi et al., 2003

Bottom Simulating Reflector (BSR)

Diagenetic alteration of biogenic opal-A to opal-CT

- ⇒ reduction of porosity allowing sediments to consolidate at depth.
- ⇒ overpressuring and a decrease in the effective stress.

Effects of biogenic silica

ultrahigh-resolution Holocene sedimentary record Palaeoenvironmental proxies for ODP site 1098 in the Palmer Deep

Lithology

Unit

Depth (mbsf)

AIS sensitivity to ocean and climate dynamics

1500

Cool

Levy et al., 2019

Terrestrial ice \rightarrow low sensitivity to ocean warming

Marine ice-sheet extent \rightarrow high sensitivity to ocean warming

Persistent terrestrial and variable marine ice sheets. Sea ice and deep pycnocline 'insulate' marine ice sheet from ocean = decreased sensitivity to ocean warming

Colleoni, F., et al. 2018

Bathymetry evolution => increase ice sheet sensitivity to ocean warming

IODP Exp. 374 (Ross Sea)

Early Miocene Climatic cooling

McKay, De Santis, Kulhanek et al., 2018, Perez et al., 2021 in press

IODP Exp. 374 (Ross Sea)

Mid Miocene Climatic Optimum

McKay, De Santis, Kulhanek et al., 2018, Perez et al., 2021, in press

ANDRILL evidence of marine-based ice sheet collapse 5-3 Ma

Geochemical provenance of detrital material evidence for retreat of the EAIS 5-3 Ma

Evidence for iceberg armadas from East Antarctica in the Southern Ocean during the late Miocene and early Pliocene.

Williams, et al., 2010

enhanced upwelling of nutrient-rich Circumpolar Deep Water (CDW) affected ice discharge

Hansen et al., 2017

Marine Isotope Stage 31 at ~1 Ma

Warnke et al., 2004

@AGU PUBLICATIONS

Paleoceanography and Paleoclimatology

RESEARCH ARTICLE

 Pliocene cooling on the Wilkes Land margin was interrupted by an

excursion to warmer subantarctic conditions during the unique MIS KM3

Revisiting published records shows

that the KM3 excursion was produced

10.1002/2017PA003225

Key Points:

Polar Frontal Migration in the Warm Late Pliocene: Diatom Evidence From the Wilkes Land Margin, East Antarctica

B. I. Taylor-Silva¹ and C. R. Riesselman^{1,2}

¹Department of Geology, University of Otago, Dunedin, New Zealand, ²Department of Marine Science, University of Otago, Dunedin, New Zealand

marine isotope stage KM3 (3.17-3.15 Ma)

a) Modern frontal positions

MIS 1 MIS 5 (+6-9 m) MIS 7 MIS 9 MIS 11 (+6-13 m) U1361 140Detrital ε_{Nd} 0.4 d -13 -15 0.3 Ba/AI -16 0.2 ODP 1090 SST (°C) 0 18 16 14 L O. I 12 10 8 ODP 1123 BWT (°C) 2. а Antarctica ΔT (°C) Ice core MIS 11 MIS 5 MIS 9 MIS 400 200 300 100 500 Age (kyr BP)

Link between extended Antarctic warmth and ice loss from the Wilkes Subglacial Basin

MIS 5, MIS 9, MIS 11: ice sheet margin at the Wilkes Basin retreated

MIS 11: → ca. 700 kilometers inland = + 3-4 m SLE

 \rightarrow ca. + 2° C for 2500

Wilson et al., 2018 *Nature* Blackburn et al., 2020, *Nature*

45 years after the Antarctic first leg.

West Antarctic Ice Sheet History IODP Exp. 374 (Ross Sea)

Exciting results are coming soon!!

Laura De Santis OGS Trieste, IT Rob McKay Victoria Univ. Wellington, NZ Denise Kulhanek Texas AM Univ., USA all shipboard party

initiation of continental-scale glaciations from alpine-type glaciers to mainly terrestrial ice sheets as CO2 dropped below 800 ppm

between ~14 and 3 million years ago: highly dynamic, mainly marine ice sheets contributing up to 20 m of global sea level rise

400-200ppm CO₂ -5 to+3° C

Since 3 million years ago: more stable ice sheet, but still fluctuating marine sheet

bipolar mode with Northern Hemisphere ice sheet driving global sea level changes of up to 20 m amplitude

https://www.youtube.com/watch?v=z8SgzgeQCPA

Watch the full video: https://www.youtube.com/watch?v=z8SgzgeQCPA

Antarctic Scientific Deep Sea Drilling: A Long History

Kim Kimberly

DVDP-1, MSSTS-1 1974, 1979 DSDP 1968 - 1983 Legs 28 & 29		CIROS & CAPE ROBERTS 1984-1999 ODP 1985 - 2003 Legs 113, 119, 178, & 188		ANDRILL 2006-2008 IODP 2003-2013 Exp. 318	IODP 2013 - 2023 Ехр. 374, 379, 382

And on the SCAR Past Antarctic Ice Sheet dynamics program: http://www.scar-pais.org

The first Antarctic DSDP Leg 28 – 1973 12 scientists 2 females one as 1 scientist and one as 1 typist

Happy birthday IODP

The IODP Exp. 374 – 2018 31 scientists 12 females (40%) one as co-chief and one as staff scientists 22 technical staff 8 females (36%)

...But we see just the tip of the iceberg!

- What will be the rate of the future significant ice sheet disintegration?
- How far are we from the next ice sheet instability tipping points?

Are there potential feedbacks mechanism that will counterbalance rapid ice mass loss?